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ABSTRACT: Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals 

(CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are 
challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We 

report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and 
analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols 

were provided to participants. CNCs were imaged and the size of individual particles was analyzed in ten participating laboratories 
that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging 

CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and 
distribution width and asymmetries for the various data sets. Consensus values were obtained by modelling the variation between 

laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation 

and shape factor of 95.8 nm, 38.2 nm and 6.3 for length and 7.7 nm, 2.2 nm and 2.9 for width. Comparison of the degree of overlap 
between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in meas-

ured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining 
are the main factors that lead to variations in measured length and width between laboratories.   

Cellulose nanocrystals (CNCs) are emerging nanomaterials de-
rived from cellulose, the world’s most abundant biopolymer.1, 2 

Their large-scale production from a renewable resource, novel 
properties, and anticipated minimal toxicity make them an at-

tractive candidate for a range of applications, some of which are 
nearing commercial success.3-6 Application areas include addi-

tives for nanocomposites, thin films, rheology modifiers, and 
biomedical products.  CNCs are produced from a number of 

cellulosic biomass sources, including trees and annual plants, 
bacteria and marine organisms. They are nanorods with a typi-

cal aspect ratio of ≈15 (for wood pulp CNCs), with high crys-
talline cellulose content, high mechanical strength and a low co-

efficient of thermal expansion. Most CNC production methods 
generate negatively charged groups on the particle surface, 

which provide colloidally stable dispersions and sites for further 
functionalization. Development of applications for this novel 

nanomaterial requires reliable characterization protocols that 
can be used to ensure reproducible production of the material 

from various biomass sources and numerous producers. Vali-
dated characterization methods and reference materials are also 



 

necessary for studies aimed at ensuring the safe use of these 

materials.7     

Key properties that must be assessed for CNCs include size and 
shape, crystallinity, and surface functional groups. It is chal-

lenging to measure CNC particle size distributions due to their 
irregular rod-shaped structure, broad size distributions, and 

strong tendency to agglomerate and aggregate. This is in con-
trast to well-behaved, spherical nanoparticles with narrow mon-

omodal size distributions. Both transmission electron micros-
copy (TEM) and atomic force microscopy (AFM) have been 

employed by the CNC community for particle size measure-
ments, although a standard approach for sample preparation, 

imaging and image analysis is still lacking.8-13 We report here 
the results of an interlaboratory comparison (ILC) conducted 

under the auspices of the Versailles Project on Advanced Materi-
als and Standards (VAMAS) Technical Working Area 34 (Nano-

particle Populations). The objective was to assess the perfor-
mance of protocols for TEM and AFM imaging of CNCs and 

subsequent particle size analysis. In order to reduce the impact of 
sample preparation on variability of specimens for imaging, the 

ILC used a National Research Council Canada (NRCC) reference 
material, CNCD-1, with samples prepared on substrates by the 

piloting laboratory. CNCD-1 was produced by sulfuric acid hy-
drolysis of softwood pulp, followed by neutralization with NaOH 

and spray drying and has been extensively characterized.14 The 
results of this study will provide the prenormative data necessary 

for the development of a technical specification on measurement 
of CNC particle size distribution at ISO/TC 229 – Nanotechnol-

ogies. This paper focuses on a summary of the TEM results.    

Transmission electron microscopy is generally considered the 

most reliable method for obtaining particle size distributions for 
nanomaterials. Most studies that have developed and validated 

TEM measurement protocols have employed gold, silica or pol-
ystyrene nanoparticle reference materials.15-17 These studies 

have been supported through international ILCs that allow one 
to assess measurement uncertainty and comparability across 

multiple laboratories. Nevertheless, these studies have utilized 
approximately spherical nanoparticles with low polydispersity 

and good TEM contrast and are not immediately adaptable to 
more complex “real-life” nanomaterials such as those produced 

industrially. One recent study has begun to address this com-
plexity by using a combination of particle counting, fractiona-

tion, and spectroscopy methods to evaluate the size distribution 
for a series of industrial nanomaterials with complex shapes and 

significant polydispersity; the results were compared to those 
obtained for well-defined spherical and monodisperse quality 

control samples.18 It was concluded that a tiered approach using 
methods such as dynamic light scattering (DLS) for an initial 

screen and TEM for more detailed studies was appropriate for 
particle sizing. The issues associated with TEM measurements 

for nanomaterials with more complex shapes and strong ag-
glomeration/aggregation have also recently been examined in a 

series of ILCs for gold nanorods, titanium dioxide nanoparti-
cles, and carbon black.19-21 These studies focused on a detailed 

assessment of image analysis methods for measurement of par-
ticle size distributions and provided a full uncertainty analysis, 

an essential feature in order to test for batch-to-batch similarity 
of materials or compare different CNC sources or preparation 

methods. They also provided the basis for publication of an ISO 

standard on TEM measurements of nanoparticles.22   

Although the TEM protocols mentioned above provide a good 

basis for addressing some of the issues encountered for polydis-
perse and non-spherical nanomaterials, there are additional fac-

tors that require consideration for CNCs. Their shape is consid-
erably less regular than that of the gold nanorods studied earlier; 

their TEM contrast, even after staining, makes it more difficult 
to distinguish CNCs from background; and the level of agglom-

eration is high, similar to the aggregates observed for TiO2 or 
carbon black. These issues motivated this ILC, in which we fo-

cus on validating a measurement and analysis protocol that can 
be used to obtain CNC particle size distributions and assess un-

certainty of the measurements. TEM particle size data from 10 
participating laboratories were modelled using skew normal 

distributions for the dispersion of the measurement results pro-
vided by each laboratory as well as the dispersion that is ob-

served between the laboratories.  

Experimental Section 

Sample preparation. An NRCC certified reference material, 
CNCD-1,23 was dispersed by ultrasonication to give a 2 % mass 

fraction CNC suspension that was deposited on plasma-treated 

carbon-coated copper grids and stained with uranyl acetate. A 
previously reported procedure14, 24 was optimized as outlined in 

the Supporting Information. ILC samples were prepared from a 
single CNC suspension on three separate days over an 11-day 

period to ensure that each laboratory received the sample on a 
pre-arranged (convenient) date. One sample from each day was 

checked by TEM prior to shipping the samples and DLS was 
used to verify that the suspension had not changed. Samples 

were sealed in a nitrogen glove box prior to shipping. No 
change in image quality was observed over a 5-week storage 

period for samples of CNCs deposited on the TEM grid  

Participating laboratories. The participating institutions were 
from Asia, Europe, and North America. These included three 

universities, six government laboratories, and one industrial la-
boratory. Not all laboratories had prior experience with imaging 

CNCs. Two samples of CNCs on carbon-coated copper grids 
were sent to each participant; the second sample was a backup. 

Participants were asked to image the samples within 2 weeks of 
receipt. Of the original 11 participants (randomly assigned a 

code, T#), 10 completed the ILC and returned data sets.    

Image acquisition and analysis protocol. The protocol re-
quested the following operating conditions: (1) an operating 

voltage between 80 kV and 300 kV; (2)  ≈ 30 000 magnification, 
such that the resolution is ≤ 0.3 nm/pixel (3) calibration and lens 

normalization at the magnification used for CNC imaging; (4) 
acquisition of larger scale images (e.g., 2 µm x 2 µm or larger) 

in multiple grid locations to locate suitable areas for higher 
magnification images; (5) collection of a sufficient number of 

images from multiple areas of the grid to analyze a minimum of 

500 individual particles. Image analysis using a custom ImageJ 
macro was recommended but participants had the option to use 

other software as long as the guidelines for particle selection 
were used. The ImageJ macro allows for automatic sequential 

opening of a set of images and manual measurement of length 
and width cross sections and saves the data and annotated im-

ages with the line profiles for analyzed CNCs. The criteria for 
selection of individual CNCs are provided in the Supporting In-

formation.   

Data Analysis. Origin Pro 2019 was used for descriptive statis-
tics and statistical comparison of data sets using the non-para-

metric two-sample Kolmogorov-Smirnov (K-S) test (e.g., 



 

length for lab 1 and lab 2). More complex data analysis and vis-

ualization was performed in R (free software environment for 
statistical computing and graphics). Skew normal model fitting 

was performed using Markov Chain Monte Carlo methods us-
ing STAN (a probabilistic programming language for statistical 

inference written in C++). The skew normal distribution differs 
from normal and lognormal distributions by the presence of an 

additional shape factor that allows for variable levels of skew-
ness. Fitting was done using the individual data points, not the 

binned data shown in histograms. The overlap index used to 
compare particle size distributions was calculated by integrat-

ing the areas under curves using the standard numerical facili-
ties of R.   

Results and Discussion 

Tests of Image Analysis Protocols. The first phase of the ILC 

focused on testing ImageJ analysis methods. Three possible 
methods were considered. The first method was based on prior 

work in the piloting laboratory that used a semi-automated Im-
ageJ macro to measure length and width manually for each par-

ticle.14, 24 Two other methods that were employed in recent TEM 

ILCs that analyzed gold nanorods and (aggregated) titanium di-
oxide were evaluated.20, 21 The contrast of stained CNCs against 

the substrate background was inadequate to utilize the auto-
mated approach based on thresholding that was employed for 

gold nanoparticles.20 The method from the titanium dioxide ILC 
used the manual polygon outlining tool in ImageJ.21 This man-

ual outlining approach provides particle length and width (as 
maximum and minimum Feret, respectively) and other poten-

tially useful parameters such as area and perimeter. Use of the 
polygon outlining tool gave length values in good agreement 

with the pilot laboratory’s semi-automated ImageJ macro. 
However, the outlining tool consistently over-estimated width 

compared with manual measurement using the semi-automated 
ImageJ macro. We hypothesize that the irregular tapered shape 

of the CNCs is incompatible with the minimum Feret measure-
ment of the minimum distance between the two parallel tan-

gents touching the particle outline. Therefore, the manual 
method using the semi-automated ImageJ macro to keep track 

of measurement data was adopted and further optimized for this 
ILC.  

A set of images was provided to ILC participants to test the im-

age analysis protocol. The images were a subset of those col-
lected for one sample as part of the characterization of the 

NRCC certified reference material, CNCD-1.14 Six data sets 
were analyzed: the original CNCD-1 data for these images plus 

data from four laboratories, one of which submitted data from 
two analysts. Comparison of the results indicated that partici-

pants interpreted the image analysis protocol instructions dif-

ferently. This was evident from the number of CNCs analyzed 
which varied from 128 to 440. In one case, Olympus automated 

software was used for automated analysis (Lab 4). The box plots 
summarizing each data set are shown in Figure S1 and demon-

strate significant variability in the data. The means for length 
and width ranged from 71 nm to 105 nm and 7.0 nm to 10.0 nm, 

respectively (Table S1). K-S analysis indicated that all but two 
of the 15 possible pairs of data sets were significantly different 

for both length and width; the labs with no significant difference 
were different for the two measurands (Table S1).   

Based on these observations and the feedback from participants, 

the image analysis protocol was modified to provide more de-
tailed instructions for the selection of analyzable CNCs. Images 

with examples of analyzable CNCs and CNCs that should be 

excluded from size analysis were also provided as an Annex to 
the protocol (see Figures S2, S3 and S4). The improved protocol 

was used for CNC size analysis in the second phase of the ILC.  

Initial Survey of TEM Results. Results were submitted from 
10 participating laboratories; each participant submitted raw 

data (images), processed images with analyzed particles num-
bered, tables of length and width for each particle analyzed, 

length and width histograms and a table with data acquisition 
and analysis information. The instruments, operating parame-

ters, calibration, analysis software and number of particles ana-
lyzed for each laboratory are summarized in Table S2. The res-

olution varied from ≈0.2 nm/pixel to 0.46 nm/pixel, with most 
labs collecting data at a resolution that was ≤20 % larger than 

the recommended value of ≤ 0.3 nm/pixel. Lab 1 collected im-
ages using two magnifications; a K-S test indicated that there 

was no significant difference between the two data sets, so they 
were pooled for further analysis. In several cases, participants 

were asked to verify that the reported calibration was still valid. 
Most participants (9 of 10) reported data for 500 or more ana-

lyzed CNCs as requested; the largest data set had 1179 particles 
and the smallest had 323 particles. The relatively small number 

of individual CNCs/image (typically 5 to 12 CNCs per µm2) 
meant that all labs collected more than 50 images, making it 

impractical to compare intra-laboratory repeatability on an im-
age-by-image basis. 

Representative images from three laboratories are shown in Fig-

ure 1. These images illustrate the variations in contrast and the 
significant agglomeration of CNCs that is typically observed, 

even at low CNC density. See, for example, the arrows that 

highlight small clusters of laterally agglomerated CNCs in the 
T9 image. The number of features assigned to clustered CNCs 

is typically similar to or larger than the number of individual 
particles. The images from T3 and T6 have several irregularly 

shaped features that appear to be end-to-end CNCs (green ar-
rows) and laterally agglomerated CNCs (yellow arrow). Note 

that such features may be counted in some cases but not others, 
depending on the image contrast and resolution and the analyst 

bias. Box plots of the length and width data for each laboratory 
are shown in Figure S5, and individual histograms for length, 

width and aspect ratio for each laboratory are provided in Fig-
ures S6, S7 and S8, respectively. In several cases, examination 

of the box plots showed a few data points that suggested errors 
in reported data; this was verified by examining the image files 

and consulting the participant as to whether the data point(s) 
should be removed or corrected.  

The results in Figure S5 to S8 show qualitatively that the max-

imum position, shape, and width of the distributions vary from 
one data set to the next for both length and width. The variabil-

ity between laboratories is somewhat lower for aspect ratio, as 
compared to length and width. Operator bias when deciding 

whether irregular features (such as those noted in Figure 1) are 
single CNCs contribute to this variability 

Particle size distributions. Statistical modeling of interlabora-

tory results requires a selection of adequate probability density 
functions that describe the data at hand. Microscopy size meas-

urements for CNCs typically provide data in the form of histo-
grams and calculate the mean and the standard deviation as a 

measure of the distribution width, with the implicit assumption 

that the distributions fit a normal model. In several cases the 
data have been shown to provide reasonable fits to a lognormal 

distribution.25-28 Recent ILC studies of other nanomaterials have  



 

 

Figure 1. Representative TEM images from labs T3 (left), T6 (centre) and T9 (right). The arrows mark features that are discussed in the text. 

   

tested various distribution models in an attempt to better repre-
sent the overall central location and breadth/shape of the distri-

butions. For example, the titanium dioxide ILC compared nor-
mal, lognormal, and Weibull distributions21 whereas a recent 

comparison of electron microscopy and ICP-MS data for gold 
nanoparticles employed mixtures of Gaussian distributions to 

model the complex shapes of the particle size distributions.29 
Others have adopted different statistical models for this pur-

pose, for example by employing a (discrete) multinomial distri-
bution.30  Model selection has so far been largely empirical; fur-

thermore, the CNC extraction method differs from bottom-up 
synthetic methods for metal or metal oxide nanoparticles so 

there is no reason to anticipate that the same size distribution 
model will apply.   

We have evaluated the particle size distributions against more 

than 50 continuous probability distributions using the tools im-

plemented in the R package GAMLSS.31 Probability density 
functions were fitted to data using the maximum likelihood 

method and ranked by the quality of each model as measured 
by the Bayesian Information Criterion (BIC). Several distribu-

tions produced a reasonable fit for our data sets, the simplest of 
which are the lognormal and skew normal distributions. Figure 

2 shows the comparison of four statistical models applied to the 
same data sets. These models are of varied complexity ranging 

from 2-parameters (normal or lognormal distributions), to 3-pa-
rameters (skew normal), to 5-parameters (two-mixture normal).  

While one can always find a complex distribution that best fits 

a particular data set, the results indicate that the skew normal 
distribution strikes a balance of being a model that is simple 

(three parameters) and flexible (allows positive and negative 
skew), and fits the data very well.  The skew normal distribution 

reduces to the normal distribution for data sets that show no 
asymmetry. Therefore, it is applicable to data sets that fit either 

normal or lognormal distributions; the use of a single distribu-
tion facilitates comparison between data sets from different la-

boratories and the development of a consensus distribution, as 
explained in the following section.    

The skew normal distribution (sN) is relatively new32 and has 

been used to model grain-size distributions33 among other ap-
plications.34 Its probability density is derived by multiplying the 

normal distribution by the standard error function. The skew 
normal distribution has 3 parameters: location (µ), scale (σ, a 

measure of distribution width) and shape (α, a measure of dis-

tribution skew or asymmetry). Note that several parametriza-
tions have been introduced to improve its mathematical perfor-

mance (such as numerical stability or sampling efficiency).  

 

 

Figure 2. Log-log cumulative probability plots for CNC length 
and width for laboratory T1 with fits of normal (N), lognormal 

(logN), skew normal (sN), and 2-mixture normal (N+N) distri-
butions. The sN distribution provides a better fit than the other 

three models for both data sets.  

 

The fitting was performed with the Markov Chain Monte Carlo 
method using STAN (a probabilistic programming language for 

statistical inference) and R. The facilities to construct and fit 
skew normal Bayesian models have been developed in the R 

package brms.35 As an example, the following general syntax 
can be utilized to perform Bayesian fitting of the skew normal 

distribution: 

brm(length ~ 1, data, family=skew_normal) eq. 1 

Fits to a skew normal distribution for TEM length and width are 

shown for several representative data sets in Figure 3; all data 
sets are shown in Figures S6-S8. Table 1 summarizes mean, 

scale (as standard deviation), and skew normal shape parame-
ters for length, width, and aspect ratio for each laboratory. Over-

all, the length distributions are broader (based on the relative 
standard deviations of their skew normal distributions) than the 

width distributions and show larger variability between labora-
tories. The fitted skew normal distribution shape factors show a 

100 nm
200 nm



 

rough correlation with the scale/mean ratio for both length and 

width.  

Figure 3. Representative data sets showing TEM histograms for 

length (top row) and width (bottom row) and a skew normal fit 
for the particle size distribution. Data sets were selected to show 

the range of distribution widths and shapes. 

Consensus distribution, parameters and uncertainty. Data 
reduction from interlaboratory studies can be conducted in sev-

eral ways. An approach that makes the fewest modeling as-
sumptions is to pool all the results together. Alternatively, one 

can establish a statistical model for individual laboratory results 
and the dispersion between the laboratories. The latter is for-

mally known as the hierarchical random effects model. The 
general principles of applying a random effects model to interla-

boratory studies have been outlined by Toman and Possolo36 
and Koepke et al.37 More recently, similar models have been 

extended to deal with data exhibiting asymmetric tendencies.38 

The statistical model of our ILC study follows the general prin-

ciples of Montoro Bustos et al29 (pooling all results) with the 
exception of using skew normal distribution to model the parti-

cle size distribution, rather than mixtures of Gaussian distribu-
tions. The skew normal consensus distribution was obtained by 

pooling the skew normal distributions representing the individ-
ual laboratory results. An equal number of random samples (N 

= 1000) was drawn from each of the skew normal distributions 
and placed into the pool. The statistical model of the entire ILC 

study (for each measurand) is therefore summarized by 3 pa-
rameters for each laboratory along with 3 additional parameters 

describing the distribution of consensus values, the grand mean, 
scale, and shape. 

The TEM data contain a total of 6168 observations from 10 la-

boratories for each of the measurands (width, length, and aspect 
ratio) and the fitting results for each laboratory and the consen-

sus distribution are summarized in Figure 4. The final consen-
sus data for length, width, and aspect ratio and the associated 

uncertainties are summarized in Table 1. The uncertainties are 
obtained as a direct output of fitting to the skew normal model. 

The dispersion between the mean laboratory results (t) is also 
provided as a measure of variability between the laboratories. 

The t values are all substantially larger than their uncertainties, 
which is indicative of significant spread in the data sets as illus-

trated qualitatively by the histograms, box plots and fitted pa-
rameters in Table 1. The dispersion value allows predictive as-

sessment of how close the individual laboratory means should 
be to the consensus value. 

 

 

Table 1. Summary of skew normal fit parameters for individual lab data and the consensus distribution for length, width, 

and aspect ratio measurements by TEM.  

Laboratory 

Length Width Aspect ratio 

Mean 
(nm) 

Std. dev. 
(nm) 

sN shape, 
α 

Mean 
(nm) 

Std. dev. 
(nm) 

sN shape, 
α 

Mean Std. dev. sN shape, 
α 

T1 116.6 44.5 6.6 7.8 1.9 1.5 15.7 6.4 9.5 

T2 94.5 23.9 2.5 8.0 1.9 1.6 12.6 4.1 5.9 

T3 91.9 41.1 8.0 7.5 2.1 4.0 12.9 5.4 6.9 

T4 83.8 18.4 2.2 6.8 1.6 0.0 12.9 3.8 3.7 

T5 86.4 35.8 6.7 8.0 1.6 2.8 11.1 4.8 8.2 

T6 77.8 35.2 8.4 7.5 2.5 3.7 11.1 5.0 13.2 

T7 87.6 35.6 6.1 6.9 1.9 3.5 13.5 5.8 9.7 

T8 99.9 33.0 3.2 6.5 1.7 2.9 16.3 6.6 6.4 

T9 102.8 43.3 8.8 8.7 2.3 3.2 13.0 5.9 9.0 

T11 110.2 54.7 9.3 8.6 2.9 3.7 13.8 6.5 7.6 

Consensus value 
(standard uncertainty) 

95.8  
(0.4) 

39.0 
(0.3) 

4.8 
(0.2) 

7.65 
(0.02) 

2.20 
(0.02) 

2.8 
(0.1) 

13.3 
(0.06) 

5.69 
(0.05) 

6.4 
(0.3) 

Dispersion, t (standard 
uncertainty) 

12.3  
(0.5) 

  
0.78 
(0.03) 

  
1.8  
(0.1) 
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Figure 4. Skew normal probability densities describing the individual laboratory results (black lines) and the corresponding consensus 

distribution (orange line).   

 

Data comparisons. The variability in skew normal distribu-

tions for the individual laboratories was examined using an 
overlap index which is defined as the relative common area be-

tween two distributions.39 This is shown graphically in Figure 
5, which provides the degree of overlap between individual data 

sets for both length and width. The mean, scale and shape pa-
rameters and degree of overlap (Figure 5) can be used to test for 

correlations with changes in the experimental parameters used 
by the participating laboratories (Table S2). For width, three 

data sets have means that are smaller than 7 nm (T4, T7 and T8, 
Table 1) and all are measured at the best microscope resolution 

(0.20, 0.22, and 0.25 nm/pixel, Table S2). These three data sets 
have narrower particle width distributions as measured by the 

scale parameter and two (T4 and T8) have the lowest average 
overlap (estimated as the average of the overlap with all other 

data sets, Figure 5) with other data sets. Overall, the results sug-
gest that a resolution of 0.2 nm/pixel would give a more accu-

rate estimate of width. However, there is a trade-off since that 
would generally require collection and analysis of a larger num-

ber of images to obtain the desired number of single particles 
for size analysis. By contrast, the data set measured at the low-

est resolution (T2, 0.46 nm/pixel) has a mean and scale that are 
close to the consensus values, which indicates that factors other 

than the resolution contribute to differences between laborato-
ries. There is no apparent correlation with the number of CNCs 

analyzed, as the data sets with the highest (T6) and lowest (T5) 

N values have mean width and scale values that are close to the 
overall consensus values (and used similar imaging resolutions) 

and an intermediate degree of overlap with other data sets. For 
pairwise comparisons (Figure 5), T8 and T9 have the lowest 

overlap of all pairs (0.59) followed by T8 and T5 (0.62). The 
low overlap reflects relatively large differences in both scale 

and mean for these two data sets. 

The length overlap index graphic in Figure 5 indicates that the 
pairs of labs with the lowest overlap are T11/T4 (0.55) and 

T4/T1 (0.6); these variations are due to large differences in 
mean length and for the T4/T1 pair the largest difference in dis- 

tribution width (scales of ≈18 nm and ≈55 nm for T4 and T1). 
The two data sets which show the lowest degree of overlap with 

other laboratories (T4 and T2) have the smallest scale factors 

(18 nm and 24 nm), similar to the observations for width above; 

the small scale factor is mainly due to the absence of longer 
CNCs, as illustrated in Figure 1. These data sets were measured 

using different resolutions (0.46 nm/pixel and 0.22 nm/pixel, 
Table S2), consistent with the expectation that particle length is 

insensitive to changes in resolution. Interestingly these two labs 

have mean lengths that are close to the overall consensus value. 

The degree of overlap for length is lowest for the T4/T11 pair 
(0.55) and highest for the T5/T7 pair (0.98) which have almost 

the same mean and scale parameters. The data sets with the larg-
est difference in number of CNCs analyzed (323 and 1179 

CNCs for T5 and T6, respectively) have similar scales and  

 

Figure 5. Degree of overlap (overlap index; relative common area 
between the two distributions) between data sets for width and 
length distributions.   
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smaller means than the consensus value, providing little evi-

dence that the number of CNCs analyzed has a major effect over 
the range covered here. 

To test whether data sets with < 500 analyzed CNCs yield re-

peatable results for a specific laboratory, smaller data subsets 
were compared for the two laboratories with the largest number 

of analyzed CNCs (T3 and T6). K-S tests showed that particle 
width distributions for data sets of ≈ 280 CNCs were different 

for both labs. By contrast, the length distributions for the data 
subsets were different for T3, but not for T6. The number of 

points needed to obtain stable size measurements was also ex-
amined by plotting the cumulative mean as a function of the 

number of analyzed particles as shown in Figure S9 for several 
data sets. This shows that the mean length stabilizes with 200-

300 analyzed particles in some cases but not others. The TEM 
width variations are similar to a one pixel error for some data 

sets (pixel sizes of 0.2 to 0.4 nm for the labs shown); however, 
in other cases the width continues to vary with an increasing 

number of analyzed particles. Although more detailed studies 
are required to make a definitive conclusion, we hypothesize 

that variations in CNC agglomeration and staining for different 
grid areas may account for these results. This issue makes it dif-

ficult to establish an optimal number of analyzed particles with-
out verifying whether a stable particle length and width are ob-

tained.  Comparison of length and width skew normal fit param-
eters indicates that the magnitude of the mean and scale param-

eters follow a similar pattern for individual laboratories. Data 
set T11 has the largest scale factor and the second largest mean 

for both length and width. This does not appear to correlate with 
the resolution used or the number of CNCs analyzed. Although 

the T11 data set was obtained using different analysis software, 

visual inspection of analyzed images provides no indication that 
the selection of analyzable CNCs is different for this laboratory. 

The mean and scale for data set T9 are also among the largest 
for both length and width and T4 has the smallest scale and sec-

ond smallest mean for length and the second smallest mean and 
scale for width. Based on the initial image analysis tests, it can 

be concluded that the selection of individual CNCs for analysis 
is a significant contributor to differences between laboratories.     

The consensus values can be compared to the data reported for 

CNCD-1, which was characterized by TEM in two laboratories. 
The reported values for mean (standard deviation) were 87 (35) 

nm and 7.3 (1.8) for length and width, respectively, for the com-
bined data from the two laboratories.14 These values fall within 

the range of results obtained from the ten ILC laboratories (Ta-
ble 1); however, the ILC data indicate that a mean value of ≈96 

nm provides a better estimate of the CNC length for CNCD-1 
than the previously reported value of 87 nm.23 It should also be 

noted that the original data was not obtained by fitting to a skew 
normal distribution which is anticipated to lead to a small (1 nm 

to 2 nm) difference in values. The previous study examined 5 
independently prepared samples, all of which were analyzed by 

a single analyst;14 the variability in length was lower than ob-
served in the ILC, although the width variability was similar. 

The latter indicates that variations in length for the ILC include 
contributions from sample-to sample variations and differences 

between laboratories/analysts.  

As noted above, analyst bias/subjectivity and sample heteroge-

neity are the main sources of ILC variability. The subjectivity 

in choice of analyzable CNCs can in principle be reduced by 
use of automated image analysis methods that are currently be-

ing developed. Although significant effort was made to opti-

mize the CNC deposition and staining method used to prepare 
samples for this ILC, agglomeration and uneven staining re-

main an issue. Recent work has demonstrated that fractionation 
of CNCs using asymmetric flow field flow fractionation can 

significantly reduce the level of CNC agglomerates, yielding 
samples that almost eliminate clusters as assessed by AFM im-

aging.40 The fractionated samples show some improvement in 
dispersion on TEM grids, although there are significantly more 

clusters than observed in samples deposited for AFM.   

Conclusions 

The ILC data obtained from ten laboratories show variability in 
the central location, width and asymmetry of the measured par-

ticle size distributions for length and width. In order to make 
quantitative comparisons between individual data sets and fa-

cilitate development of consensus values we have employed an 
approach wherein each data set is fit to a skew normal distribu-

tion which yields three parameters: the mean as a measure of 
the central location, standard deviation as a measure of the dis-

tribution scale/width and a shape parameter as a measure of the 

distribution asymmetry. This approach has the advantage of us-
ing a single distribution that can adequately deal with the vari-

ability in the data while introducing only one new fit parameter 
compared to the two-parameter distributions, such as normal or 

lognormal, that have frequently been employed for fitting par-
ticle size distributions. This approach also has fewer parameters 

than fits to sums of distributions.   

Consensus values are obtained from the individual data sets by 
modelling the variation between laboratories using a skew nor-

mal distribution. This gives values for the consensus distribu-
tion for mean, standard deviation and shape of 95.8 nm, 38.2 

nm and 6.3, respectively, for length and 7.7 nm, 2.2 nm and 2.9, 
respectively, for width, with uncertainties as listed in Table 1. 

Attempts to correlate the lab-to-lab variability with differences 
between experimental conditions for data acquisition and anal-

ysis indicated that a higher magnification for image acquisition 
yielded particle width distributions with smaller mean and 

standard deviation values. One can conclude that a resolution of 
< 0.3 nm/pixel would be preferable for CNC imaging, although 

collection of additional images may be necessary to obtain the 
required number of particles for analysis and may lead to rejec-

tion of a larger fraction of long particles. However, the use of a 
smaller pixel size did not appear to be a factor in determining 

the measured differences in length. Overall, we conclude that 
the selection of individual particles for image analysis is one of 

the larger contributors to differences between laboratories, even 
after implementing an improved analysis protocol based on the 

results of the image analysis tests in phase 1. Variability in CNC 

agglomeration/aggregation and staining11 is another important 
factor; this is difficult to control even after optimizing the pro-

tocol and preparing all samples in the piloting laboratory.       

Finally, we note that the AFM imaging results obtained during 
this ILC will be reported elsewhere. A final comparison of size 

measurements from the two microscopy methods will provide 
a useful assessment of methods for image acquisition and anal-

ysis procedures for CNCs. It will also give insight on the agree-
ment between laboratories and the approaches necessary to 

make comparisons between different CNC sources and their 
characterization in different laboratories.   
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